ド・モルガンの法則
存在記号
ex.
の否定
の証明
How to prove
- Find x so that P(x) is true.
- Prove that Q(x) is true.
全称記号
ex.
の否定
の証明
How to prove
- Let x be any element satisfying P(x).
- Prove Q(x)
命題が偽であることの証明
Statement X.
- It is True if we prove X.
- It is False if we prove the negation
全称記号の書き換え
以下の3式はすべて同じ意味
の証明
- For "", P is hypothesis or assumption, Q is conclusioin.
- In order to prove "", we have to prove Q by using the assumption that P is True.
推論のルール
Let P, Q, R be statements.
対偶
背理法
Prove by proving is false (or have a contradiction)
の証明
How to prove .
- Let x be an element (satisfying conditions).
- Find y, which usually depends on x, so that is true.
- Prove P(x, y).
の証明
- Find x so that it true
- Let y be an element
- Prove P(x, y)